Close Menu
    What's Hot

    Claude Code just got updated with one of the most-requested user features

    January 15, 2026

    New Cycle Energy Points To $5,000

    January 15, 2026

    Breez Awards Bitcoin Prizes For Lightning Integrations In BTCPay Server, Primal, And More

    January 15, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    CryptoMarketVision
    • Home
    • AI News
    • Altcoin
    • Bitcoin
    • Business
    • Market Analysis
    • Mining
    • Trending Cryptos
    • Moneyprofitt
    • More
      • About Us
      • Contact Us
      • Terms and Conditions
      • Privacy Policy
      • Disclaimer
    CryptoMarketVision
    Home»AI News»The future of rail: Watching, predicting, and learning
    The future of rail: Watching, predicting, and learning
    AI News

    The future of rail: Watching, predicting, and learning

    adminBy adminDecember 25, 2025No Comments4 Mins Read
    Share
    Facebook Twitter LinkedIn Pinterest Email


    A recent industry report [PDF] argues that Britain’s railway network could carry an extra billion journeys by the mid-2030s, building on the 1.6 billion passenger rail journeys recorded to year-end March 2024. The next decade will involve a combination of complexity and control, as more digital systems, data, and interconnected suppliers create the potential for more points of failure.

    The report’s central theme is that AI will become the operating system for modern rail, not as a single, centralised collection of models and algorithms, but as layers of prediction, optimisation, and automated monitoring found in infrastructure, rolling stock, maintenance yards, and stations (pp.18-23). This technology will guide human focus within daily work schedules rather than replace human activity entirely.

    Maintenance to become predictive and data-driven

    Traditional rail maintenance relies on fixed schedules and manual inspections, a reactive and labour-intensive practice. The whitepaper cites Network Rail’s reliance on engineers walking the track to spot defects (p.18). AI will shift the industry to predictive maintenance, analysing data from sensors to forecast failures before they cause significant disruption.

    This involves a combination of sensors and imaging, including high-definition cameras, LiDAR scanners, and vibration monitors. These provide machine-learning systems with data that can flag degradation in track, signalling, and electrical assets ahead of failure (pp.18-19).

    These monitoring programs can generate alerts months in advance, reducing emergency call-outs. The timeframe for predicting asset failure varies by asset type. Network Rail’s intelligent infrastructure efforts should transition from “find and fix” to “predict and prevent.”

    Network Rail emphasises data-led maintenance and tools designed to consolidate asset information, while European R&D programs (like Europe’s Rail and its predecessor, Shift2Rail) fund projects like DAYDREAMS, similarly aimed at prescriptive asset management. Prediction at scale requires a common approach to achieve transformation.

    Traffic control and energy efficiency

    Operational optimisation, beyond predictive maintenance, offers significant returns. AI systems use live and historical operating data—train positions, speeds, weather forecasts—to anticipate disruption and adjust traffic flow. Digital twin and AI-based traffic management trials in Europe, alongside research and testing of AI-assisted driving and positioning, could increase overall network capacity without laying more track (p.20).

    Algorithms also advise drivers on optimal acceleration and braking, potentially saving 10-15% in energy. Considering route variations, traction, and timetable constraints, energy savings compound quickly across a large network.

    Safety monitoring and CCTV

    Visible AI applications focus on safety and security. Obstacle detection uses thermal cameras and machine learning to identify hazards beyond human visibility. AI also monitors level crossings and analyses CCTV footage to spot unattended items and suspicious activity (pp.20-21). For example, AI and LiDAR are used for crowd monitoring at London Waterloo as part of a suite of safety tools.

    Passenger flows and journey optimisation

    AI can forecast demand using ticket sales, events, and mobile signals, allowing operators to adjust the number of carriages and reduce overcrowding, the report states. Passenger counting is a high-impact, low-drama application: better data supports better timetables and clearer customer information.

    Cybersecurity issues

    As operational technology converges with IT, cybersecurity becomes a critical operational issue. Legacy systems, lacking replacement plans, pose a risk, as does integrating modern analytics with older infrastructure. This creates conditions attractive to attackers.

    The future of AI in rail involves sensors performing in extreme environments, models trusted and tested by operators, and governance that treats cyber resilience as inseparable from physical safety. The report’s message is that AI will arrive regardless. The question is whether railways proactively adopt and control it or inherit it as un-managed complexity.

    (Image source: “Train Junction” by jcgoble3 is licensed under CC BY-SA 2.0.)

     

    Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.

    AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    admin
    • Website

    Related Posts

    Claude Code just got updated with one of the most-requested user features

    January 15, 2026

    McKinsey tests AI chatbot in early stages of graduate recruitment

    January 15, 2026

    HBM on GPU: Thermal Challenges and Solutions

    January 14, 2026

    Salesforce rolls out new Slackbot AI agent as it battles Microsoft and Google in workplace AI

    January 14, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Claude Code just got updated with one of the most-requested user features

    January 15, 2026

    New Cycle Energy Points To $5,000

    January 15, 2026

    Breez Awards Bitcoin Prizes For Lightning Integrations In BTCPay Server, Primal, And More

    January 15, 2026

    Subscribe to Updates

    Get the latest sports news from SportsSite about soccer, football and tennis.

    Welcome to Crypto Market Vision – your trusted source for everything crypto Our mission is simple: to make the world of cryptocurrency clear, accessible, and actionable for everyone. Whether you are a beginner exploring Bitcoin for the first time or a seasoned trader looking for market insights, our goal is to keep you informed, empowered, and ahead of the curve.

    Facebook X (Twitter) Instagram Pinterest YouTube
    Top Insights

    Claude Code just got updated with one of the most-requested user features

    January 15, 2026

    New Cycle Energy Points To $5,000

    January 15, 2026

    Breez Awards Bitcoin Prizes For Lightning Integrations In BTCPay Server, Primal, And More

    January 15, 2026
    Get Informed

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    Facebook X (Twitter) Instagram Pinterest
    • Contact Us
    • About Us
    • Terms and Conditions
    • Privacy Policy
    • Disclaimer

    © 2025 cryptomarketvision.com. All rights reserved. Designed by DD.

    Type above and press Enter to search. Press Esc to cancel.

    ethereum
    Ethereum (ETH) $ 3,297.00
    tether
    Tether (USDT) $ 0.999736
    bitcoin
    Bitcoin (BTC) $ 95,490.00
    xrp
    XRP (XRP) $ 2.07
    bnb
    BNB (BNB) $ 930.35
    solana
    Solana (SOL) $ 142.06
    usd-coin
    USDC (USDC) $ 0.999893
    dogecoin
    Dogecoin (DOGE) $ 0.139741